The exterior Dirichlet problem for Hessian quotient equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the exterior Dirichlet problem for Hessian equations

In this paper, we establish a theorem on the existence of the solutions of the exterior Dirichlet problem for Hessian equations with prescribed asymptotic behavior at infinity. This extends a result of Caffarelli and Li in [3] for the MongeAmpère equation to Hessian equations.

متن کامل

The Dirichlet problem for Hessian equations on Riemannian manifolds

on a Riemannian manifold (M n , g), where f is a symmetric function of λ ∈ R , κ is a constant, ∇2u denotes the Hessian of a function u on M and, for a (0, 2) tensor h on M , λ(h) = (λ1, · · · , λn ) denotes the eigenvalues of h with respect to the metric g. The Dirichlet problem for equations of type (1.1) in R , with κ = 0, under various hypothesis, is studied by Caffarelli, Nirenberg and Spr...

متن کامل

Hessian Equations with Infinite Dirichlet Boundary Value

In this paper, we will show the existence and non-existence of Hessian equations with infinite Dirichlet boundary value conditions. KewwordsHessian equation, k-convex solution, singular boundary value, existence/nonexistence, viscous solution. The research was supported by the National 973-Project from MOST and Trans-Century Training Programme Foundation for the Talents by the MOE. The work was...

متن کامل

The Dirichlet Problem for Nonuniformly Elliptic Equations

and repeated indices indicate summation from 1 to n. The functions a'(x, u, p), a(x, u, p) are defined in QX£ n + 1 . If furthermore for any ikf>0, the ratio of the maximum to minimum eigenvalues of [a(Xy u, p)] is bounded in ÛX( — M, M)XE, Qu is called uniformly elliptic. A solution of the Dirichlet problem Qu = Q, u—<f)(x) on <50 is a C(n)P\C(O) function u(x) satisfying Qu = 0 in £2 and agree...

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2012

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2012.03.034